Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 18(2): 61-67, Mar. 2015. graf, tab
Article in English | LILACS | ID: lil-745571

ABSTRACT

Background This study aimed to identify and select informative Simple Sequence Repeat (SSR) markers that may be linked to resistance to important groundnut diseases such as Early Leaf Spot, Groundnut Rosette Disease, rust and aflatoxin contamination. To this end, 799 markers were screened across 16 farmer preferred and other cultivated African groundnut varieties that are routinely used in groundnut improvement, some with known resistance traits. Results The SSR markers amplified 817 loci and were graded on a scale of 1 to 4 according to successful amplification and ease of scoring of amplified alleles. Of these, 376 markers exhibited Polymorphic Information Content (PIC) values ranging from 0.06 to 0.86, with 1476 alleles detected at an average of 3.7 alleles per locus. The remaining 423 markers were either monomorphic or did not work well. The best performing polymorphic markers were subsequently used to construct a dissimilarity matrix that indicated the relatedness of the varieties in order to aid selection of appropriately diverse parents for groundnut improvement. The closest related varieties were MGV5 and ICGV-SM 90704 and most distant were Chalimbana and 47-10. The mean dissimilarity value was 0.51, ranging from 0.34 to 0.66. Discussion Of the 376 informative markers identified in this study, 139 (37%) have previously been mapped to the Arachis genome and can now be employed in Quantitative Trait Loci (QTL) mapping and the additional 237 markers identified can be used to improve the efficiency of introgression of resistance to multiple important biotic constraints into farmer-preferred varieties of Sub-Saharan Africa.


Subject(s)
Arachis/genetics , Polymorphism, Genetic , Microsatellite Repeats , Disease Resistance/genetics , Genetic Variation , DNA/isolation & purification , Africa , Quantitative Trait Loci
2.
Electron. j. biotechnol ; 18(2): 77-82, Mar. 2015. ilus, tab
Article in English | LILACS | ID: lil-745573

ABSTRACT

Background Genetic diversity of finger millet (Eleusine coracana), a nutritious neglected staple cereal in Africa and South Asia is largely uncharacterized. This study analysed 82 published SSR markers for finger millet across 10 diverse accessions to compile an informative set for genetic characterisation. Extensive optimization compared single samples with bulked leaf or bulked DNA samples for capturing within accession genetic diversity. The markers were evaluated to determine (1) how efficiently they amplified target loci during high-throughput genotyping with a generic PCR protocol, (2) ease of scoring PCR products and (3) polymorphism and ability to discern genetic diversity within the tested finger millet germplasm. Results Across 88 samples, the 52 markers that worked well amplified 274 alleles, ranging from 2 to 14 per locus with a mean of 4.89. Major allele frequency ranged from 0.18 to 0.93 with a mean of 0.57. Polymorphic Information Content (PIC) ranged from 0.13 to 0.88 with a mean of 0.5 and availability varied between 64 and 100% with a mean of 92.8%. Heterozygosity ranged from 0 to 1.0, with a mean of 0.26. Discussion Five individual samples from an accession captured the largest number of alleles per locus compared to the four different bulked sampling strategies but this difference was not significant. The identified set comprised 20 markers: UGEP24, UGEP53, UGEP84, UGEP27, UGEP98, UGEP95, UGEP64, UGEP33, UGEP67, UGEP106, UGEP110, UGEP57, UGEP96, UGEP66, UGEP46, UGEP79, UGEP20, UGEP12, UGEP73 and UGEP5 and was since used to assess East African finger millet genetic diversity in two separate studies.


Subject(s)
Genetic Variation , Microsatellite Repeats , Eleusine/genetics , Genotyping Techniques , Phylogeny , DNA/isolation & purification , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL